Frobenius algebras and skein modules of surfaces in 3-manifolds
نویسنده
چکیده
For each Frobenius algebra there is defined a skein module of surfaces embedded in a given 3manifold and bounding a prescribed curve system in the boundary. The skein relations are local and generate the kernel of a certain natural extension of the corresponding topological quantum field theory. In particular the skein module of the 3-ball is isomorphic to the ground ring of the Frobenius algebra. We prove a presentation theorem for the skein module with generators incompressible surfaces colored by elements of a generating set of the Frobenius algebra, and with relations determined by tubing geometry in the manifold and relations of the algebra.
منابع مشابه
Homotopy and q - homotopy skein modules of 3 - manifolds : an example in Algebra Situs .
Algebra Situs is a branch of mathematics which has its roots in Jones’ construction of his polynomial invariant of links and Drinfeld’s work on quantum groups. It encompasses the theory of quantum invariants of knots and 3-manifolds, algebraic topology based on knots, operads, planar algebras, q-deformations, quantum groups, and overlaps with algebraic geometry, non-commutative geometry and sta...
متن کاملDeformation of String Topology into Homotopy Skein Modules
Relations between the string topology of Chas and Sullivan and the homotopy skein modules of Hoste and Przytycki are studied. This provides new insight into the structure of homotopy skein modules and their meaning in the framework of quantum topology. Our results can be considered as weak extensions to all orientable 3-manifolds of classical results by Turaev and Goldman concerning intersectio...
متن کاملThe skein module of torus knots complements
We compute the Kauffman skein module of the complement of torus knots in S3. Precisely, we show that these modules are isomorphic to the algebra of Sl(2, C)-characters tensored with the ring of Laurent polynomials. Skein modules were introduced indenpendantly by V. Turaev in 1988 and J. Przytycki in 1991 (see [TU88, HP92]) as a C[A±1]-module associated to a 3-manifold M generated by banded link...
متن کاملI Is a Quantization. 4. If We Modify the Multiplication of Links in F I
Algebra Situs is a branch of mathematics which has its roots in Jones' construction of his polynomial invariant of links and Drinfeld's work on quantum groups. It encompasses the theory of quantum invariants of knots and 3-manifolds, algebraic topology based on knots, operads, planar algebras, q-deformations, quantum groups, and overlaps with algebraic geometry, non-commutative geometry and sta...
متن کاملOn Constructions of Generalized Skein Modules
Jozef Przytycki introduced skein modules of 3-manifolds and skein deformation initiating algebraic topology based on knots. We discuss the generalized skein modules of Walker, defined by fields and local relations. Some results by Przytycki are proven in a more general setting of fields defined by decorated cell-complexes in manifolds. A construction of skein theory from embedded TQFT-functors ...
متن کامل